ddefalco
Questo è un forum di discussione e non un sistema di messaggistica, in particolare con me.
Ciò vuol dire che ognuno che vi partecipa contribuisce alla discussione di un argomento (topic) cercando di risolvere i problemi che si pongono, con un intervento (post) che viene messo a disposizione di tutti: va pertanto inteso come un dibattito tra tutti nel quale gli interventi (e non le persone), hanno lo stesso peso.
Certamente non è una comunicazione ‘peer to peer’ con me (per fare questo esiste il ricevimento in stanza, l’email, la chat…) né tantomeno dev’essere un’esibizione del proprio sapere o non sapere (esame).

Pertanto bandiamo frasi del tipo “Ci scusiamo per eventuali errori”, “accettiamo consigli per eventuali correzioni”, peggio ancora “domanda per il professore”, …, e pensiamo sempre al “sodo”.
Concediamo alla forma, tutt’al più qualche volta, un saluto.
Domenico de Falco.

ddefalco

ING - IND 13 : DDEFALCO's Forum
 
IndiceCalendarioFAQCercaLista UtentiGruppiRegistratiAccedi
Ultimi argomenti
Cerca
 
 

Risultati secondo:
 
Rechercher Ricerca avanzata

Condividere | 
 

 Coordinate generalizzate e coordinate lagrangiane

Vedere l'argomento precedente Vedere l'argomento seguente Andare in basso 
AutoreMessaggio
gvar92



Numero di messaggi : 1
Corso di appartenenza : Meccanica Applicata alle Macchine
NomeCognome : Gianfranco Varone
Data d'iscrizione : 11.11.13

MessaggioTitolo: Coordinate generalizzate e coordinate lagrangiane   Mar Gen 20, 2015 9:28 am


Salve ragazzi,volevo rendervi partecipe di un dubbio che ho sulle coordinate generalizzate.
In pratica non mi è ancora ben chiara la distinzione tra Coordinate generalizzate e coordinate lagrangiane di un sistema di punti materiali.

Provo a riportare quella che è una mia interpretazione.
Per coordinate generalizzate si intende un insieme di coordinate diverse da quelle cartesiane.
Supponendo che per fissare la posizione del sistema di punti si necessita di 3n coordinate,e siano h le equazioni di vincolo (indipendenti),è possibile esprimere h coordinate in funzione delle 3n-h=d rimanenti coordinate. In pratica le d coordinate si scelgono arbitrariamente e indipendenti tra loro,le restanti h coordinate sono funzioni di queste ultime e si ricavano tramite le equazioni di vincolo,in modo che la posizione del sistema di punti è individuata.
Ora il mio dubbio è: Le coordinate lagrangiane sono queste d coordinate indipendenti? Ovvero sono delle particolari coordinate generalizzate?

Spero sia stato chiaro.

Buona giornata e buono studio.
Tornare in alto Andare in basso
Vedi il profilo dell'utente
bernard



Numero di messaggi : 3
Corso di appartenenza : Meccanica Applicata alle Macchine
NomeCognome : bernard bianconi
Data d'iscrizione : 04.11.11

MessaggioTitolo: Re: Coordinate generalizzate e coordinate lagrangiane   Mar Gen 20, 2015 12:11 pm

ciao.
Io ho dato un altra interpretazione cioè definiamo coordinate generalizzate o lagrangiane di un sistema un insieme di coordinate indipendenti tra loro e pari al numero di gradi di libertà del sistema. Infatti per esempio per il pendolo quando usiamo le coordinate cartesiane, per descrivere una sua possibile soluzione, aggiungiamo un'equazione di vincolo essendo tali coordinate dipendenti tra loro. Cosa che non facciamo quando usiamo l'angolo thehta cioè quello tra la lunhezza del pendolo e l'ascissa visto che ad ogni valore di theta corrisponde una posizione del pendolo ed ad ogni posizione del pendolo corrisponde un valore di theta. Quello che dici tu secondo me è più legato al discorso del Jacobiano di trasformazione, purtroppo anche a me è poco chiaro, dove da q1 q2....qd sono il numero di gradi di libertà del sistema mentre le altre q che vanno da d+1 ad h sono pari a delle costanti che soddisfano le equazioni di vincolo olonomo.
Ovviamente questa è la mia interpretazione che no so se è giusta o meno.
Tornare in alto Andare in basso
Vedi il profilo dell'utente
ddefalco
Admin
avatar

Numero di messaggi : 171
Località : Napoli
Corso di appartenenza : Meccanica Applicata alle Macchine
NomeCognome : Domenico de Falco
Data d'iscrizione : 29.12.08

MessaggioTitolo: Re: Coordinate generalizzate e coordinate lagrangiane   Mar Gen 20, 2015 1:14 pm

ohhhh finalmente una bella discussione produttiva !!!  cheers

Il problema che pone gvar92 è ben posto e molto importante.

E voglio dire da subito che la sua interpretazione è completa e corretta (n.b. h è però il numero dei soli vincoli olonomi e non il numero complessivo di vincoli come è dimostrato con un esempio sul libro di testo e come si può leggere dalle pagine del libro di dinamica analitica di Rosenberg che vi riporterò in tale parte).

Comunque anche bernard da un'interpretazione tutto sommato corretta salvo il fatto che un insieme di coordinate generalizzate è lagrangiano se è di dimensione pari al numero di gradi di libertà (gdl) del sistema. Ad onor del vero, come dissi a lezione, in gergo si tende a confondere la dizione "coordinate generalizzate" con "coordinate lagrangiane" intendendo che il numero delle prime è pari al numero di gdl del sistema.

Allora per "metterci d'accordo" usiamo queste definizioni:

  1. coordinate cartesiane di un sistema : N-upla di numeri (ognuno associato ad una lunghezza che esprime, nel sistema di riferimento tridimensionale, la componente della distanza lungo uno degli assi di un punto del sistema) specificando il valore della quale si indica una posizione possibile del sistema nello spazio fisico e viceversa N-upla di numeri corrispondente ad ogni posizione possibile del sistema. Il numero N è qualsiasi purché non minore del numero di gdl.
  2. coordinate generalizzate di un sistema : N-upla di numeri (ognuno associato ad una grandezza qualsiasi, lunghezza, angolo, deformazione, forza...) specificando il valore della quale si indica una posizione possibile del sistema nello spazio fisico e viceversa n-upla di numeri corrispondente ad ogni posizione possibile del sistema. Il numero n è qualsiasi purché non minore del numero di gdl.
    Ovviamente allora le coordinate cartesiane possono intendersi come coordinate generalizzate particolari del sistema.
  3. coordinate lagrangiane di un sistema : qualunque d-upla di coordinate generalizzate dove d è proprio il numero di gdl del sistema


Metto qui il capitolo del libro di Dinamica analitica di Rosenberg nel quale vengono specificate queste cose. Lo arricchiro con qualche mia nota successivamente.
Very Happy
Tornare in alto Andare in basso
Vedi il profilo dell'utente
manlio182



Numero di messaggi : 13
Corso di appartenenza : Dinamica e Controllo dei Sistemi Meccanici
NomeCognome : manlio bellocchio
Data d'iscrizione : 17.02.09

MessaggioTitolo: Re: Coordinate generalizzate e coordinate lagrangiane   Lun Feb 02, 2015 7:20 pm

Riguardo i vincoli non-onolomi, mi è sembrato di capire che per definizione lo sono tutti i vincoli che non posso non essere espressi nella forma: f(x,t)=0.
Ne fanno parte ad esempio z(t)>0, in quanto vi è una disuguaglianza.
Inoltre, vi è una classe di vincoli non-olonomi che possono essere espressi per mezzo di un uguaglianza delle velocità e derivate parziali (forma Pfaffiana) ma non integrabili. Questi vincoli danno restrizioni allo spostamento infinitesimo, ma non alle posizioni possibili del sistema. Cioè, vincolano solo il "modo" in cui posso passare da una configurazione ad un altra, ma le configurazioni possibili sono le stesse con o senza il vincolo?

Se il numero di gradi di libertà è pari d=3n-rango(A) nella forma Ax=b, aggiungere eq di vincolo non-olonome vuol dire aggiungere righe ad A linearmente dipendenti alle precedenti?
Tornare in alto Andare in basso
Vedi il profilo dell'utente
Contenuto sponsorizzato




MessaggioTitolo: Re: Coordinate generalizzate e coordinate lagrangiane   

Tornare in alto Andare in basso
 
Coordinate generalizzate e coordinate lagrangiane
Vedere l'argomento precedente Vedere l'argomento seguente Tornare in alto 
Pagina 1 di 1

Permessi di questa sezione del forum:Non puoi rispondere agli argomenti in questo forum
ddefalco :: CORSI :: Dinamica e Controllo di Sistemi Meccanici-
Andare verso: